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Abstract A system consisting of multiple mobile robots in which the robots can see each
other by their eye sensors but are not equipped with any communication system, can be viewed
as a distributed system in which the components (i.e., robots) can “communicate” with each
other only by means of their mnoves. We use this system to investigate, through a case study
of a number of problems on the formation of geometric figures in the plane, the power and
limitations of the distributed control method for mobile robots. In the distributed control
method, at every tick of its local clock, each robot observes the positions of all the robots
and moves to a new position determined by the given algorithm. The robots are anonymous
in the sense that they all execute the same algorithm and they cannot be distinguished by
appearances. The local clocks of the robots are not necessarily synchronized, and initially, the
robots do not have a common z-y coordinate system. The problems we discuss include (1)
converging the robots to a single [ ~nt, (2) moving the robots to a single point, (3) agreement
on a single point, (4) agreement on the unit distance, (5) agreement on direction, and (6) leader
election. We develop algorithms for solving some of these problems under vaiious conditions.
Some impossibility results are also presented.

1 Introduction

In the last several years, interest in the distributed control method for multiple mobile robots
has increased considerably 1, 2, 5, 7]. The main idea of the method is to let each robot execute
a simple algorithm and determine its movement adaptively based on the observed movement of
other robots, so that the robots as a whole group will achieve the given goal. Th.s approach has
been shown to be very promising for the generation of certain patterns and collision avoidance.
In the earlier works on distributed robot control, the main emphasis is on the development
of heuristic algorithms for various problems and the presentation of simulation results, aad in
many cases, formal discussions on the correctness and performance of the algorithms are not
given (1] [5).

A robot systemn in which the robots can commmunicate with each other by radio, such as
a system of radio-controlled vehicles or spaceships, can be considered as a distributed system
whose communication topology is a complete graph. Therefore, such systems can be analyzed
using the standard techniques developed for distributed computing systems (although such
analyses are by no means easy). In this paper, we consider a system consisting of multiple

*This work was sapported in part by the National Science Foundation under grants ('CR-9004346 and IRI
9307506
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inobile rcbots in which the robots can see each other by their eye sensors, but they are not
equipped with any cominunication system. We view this system as a distributed system in which
the components {i.e., robots) can “communicate” with each other only by means of their moves
Clearly this system is a suitable model for studying the distributed control method mentioned
in the previous paragraph. As the reader might expect from the assumptions we make about the
robots below, the study reveals delicate interplay of a number of key concepts of distnibuted
computing, such as synchrony and asynchrony, communication, termination detection, self
stabilization, anonywmity of processors, and knowledge (in a casual sense).

A basic problem for such a robot system is to design an algorithm such that, if alj the
rubots execute 1t individually, then the robots as a whole group will eventually form the given
geometric figure, such as a circle and a line segment {3, 5, 6]. The main goal of this paper is
to present some theoretical results related to this problem. The results presented here provide
useful insights that will help us to answer certain fundamental questions, such as whether the
given algorithm really solves the given problem and, for that matter, whether the given problem
is solvable at all in a strict sense by a distributed algorithm. This work is a step toward the
ultimate goal of determining exactly what class of proble.us are solvable in a distributed manner.

We assume that each robot is a mobile processor having an eye sensor which, at every tick
of its local clock, observes the positions of all the robots (including itself) in terms of its own
local z-y coordinate system, and moves to a new position determined by the given algorithm.
To simplify the discussion, in this paper we assume that a robot can move to its new position
instantazeously. This assumption helps us to bring out the fundamental issues of the problem,
and still, many of the techniques and results we obtain for this simplified case seem to apply
{with son:e modifications) to the case when the move of a robot is not instantaneous. {We plan
to report on the noninstantaneous case in a future paper.)

The robot (or the algorithm it uses to con. “ite the new position) is oblivious if the new
position is determined only from the positions ol the robots observed at that time instant.
Otberwise, it is not oblivious, and the new position may depend also on the observations made
in the past. The local clocks of the robots are not necessarily synchronized, i.e., they may tick
at different r.tes. It is assumed that initially, the robots do not have a common z-y coordinate
system. So thelocal z-y coordinate systems of two robow may not agree on any of the following:
the location o the origin, the unit distance, and the direction of the positive z-axis. Finally,
we assumne tha' the robots are anonymous, in the sense that they all use the same algorithim
for determining the next position, and the s cannot be distinguishea by their appearances. This
implies, for ~xample, that depending on what movements are allowed, a robot that observes
other robots at two consecutive clock ticks may not be able to tell which robot has moved to
which position between the two ticks.

Under these assumptions, we first consider the problem of converging all the robots toward a
single point. (The process of convergence need not terminate in finite steps.) Note that since the
robots do not have a common z-y coordinate system, we cannot simply use an algorithm such as
“move toward point (0,0)". For this problem, we give an oblivious algorithm and then discuss
the subtlety of the problem by showing how certain minor changes in the algorithin or the
assumption affect the possibility of achieving the goal. Also, we show that the set of geumetric
figures realizable by any deterministic algorithm must necessarily include the configuration in
which all robots are located at the same position.

Next, we investigate the problem of having the robots agree on a common z-y coordinate
system. Clearly, such an agreement can greatly reduce the complexity of subsequent motion
coordination algorithms. The problem consists of three subproblems, agreement on the origin,
agreement on the unit distance, and agreement, on the direction of the positive z-axis. We
first consider a related problem of moving two robots to a single point in finite steps (such a
problem is called a formation problem, in contrast to a convergence problem) and zhow that
this problem can be solved by a nonoblivious algorithm but not by any oblivious algorithm
(The corresponding convergence problemn can be solved by an oblivious algorithm, as we stated
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1:=9
2. repeat
3. Wait until ¢, ticks; Let k be the new value of ¢,;

/* Start Move Action */
Let P. be the multiset of positions of the robots, excluding r, at local time &,

given in terms of Z,;
I:=1u{{p.k)pe YU {{p".k)}, where p* is the current position of r;
Randomly select an element g from ¥(/);

o

6.
7 Move to g;

/* End Move Action */
K. until forever

Figure 1: Behavior of robot r.

above.) Since two robots can agree on the ongin if they can move to a siagle point, this resujt
shows that agreement on the origin for two rohots is solvable by a nonoblivious algorithm
Muicover, we chow th~t 2areement an the arigin ic enlvable by a nonablivious alearithm even
for the case n > 2, where n is the number of robots. We also show that agreemnent on the unit
distance is solvable by a nonoblivious algorithmn if either n = 2, or n > 2 and no two robots are
“clones™ (to be defined later) of each other. On the other hand, we show that agreement on
direction is not solvable even if n = 2 and the clocks are synchronized. This fast resuit shows
that the robots cannot agree on a common z-y coordinate system in general.

Finally, we consider the case in which the robots have a sense of direction {i.e., the direction

of the positive z-axis is the same for all robots). For this case, we show that the robots can agree
on a common z-y coordinate system and elect a leader, provided that no “clones” exist. We
can show that once a unique leader is elected, the robots can be moved to form any geometric
figure.
It can be shown that if the local clocks are synchronized, then the robots can easily com
municate with each other by means of the distances of their moves, once they agree on the
unit distance. Therefore, many problems on synchronized robot systems can be reduced to
the corresponding problemns on anonymous complete networks, and can be analyzed using the
techniques developed, for example, in {8]. Details can be found in the jull paper

We present necessary definitions and basic assumptions in Section 2. Section 3 discusses
the problem of converging the robots to a point. Agreement on a common coordinate system
is discussed in Section 4. In Section 5 we consider the case in which the robots have a sense of
direction. Concluding remarks are found in Section 6. In this abstract, we present only the key
ideas. All the details and the missing proofs can be found in the full paper.

2 Definitions and Basic Assumptions

We briefly formalize the problem described in Section 1.

A robot r is a mobile processor with sufficiently large memory space, an artificial eye sensor,
a local z-y coordinate system Z,, and a local clock ¢,. The behavior of r is given in Figure 1.
Local clock ¢, is an integer counter whose contents, initially 0, continue to increase by 1 (i.e.,
the clock “ticks™) at infinitely many (unknown) real time instants. We assume that at real time
0, r is at the origin (0,0) of Z,, executes line | instantaneously, and waits (in line 3) for its local
clock ¢, to tick and reach the value 1. The robots have no access Lo rea) time. The symbol /.
called the configuration of the memory of r, is a multiset' containing elements of the form

'For simplicily, we assume thai a robot is a point, and hence Lwo or more robots can occupy the same position
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L. {p.k), where pis the position of a robot other than r that r observed 1t focal time &, and

2. (p.k), where p is the position of r at local time k.

Heie, pis given in terms of 2,. The fuuciion ¥ (line 6) is called an algorithm for r, where for
each configuration /, yi(/)is the set of possible next positions of r (given in terms of Z,) when
r “knows” /. If (1} is a singleton for all 1, then ¥ is said to be deterministic. Otherwise, r
randomly selects its next position from ¥(!I) (line 6), and hence

¥ is a randomized algorithm.
The fact that I contains elements of the form (p. k)

indicates that r always knows its current
position in terms of Z,. Also, note that / contains only the positions of the robots that r has

observed. So r never observes, for example, the velocity of other robots. Note
are anonymous in the following sense: (1) the initial configuration @ and function ¥ are common
to all the robots, (2) the identifier “r™ of robot r is not an argument of v, and (3) P, contains
only the positions of the robots (but not their identities).

that the robots

We assume that different robots may have different coordinate systems, i.e., Z, # Z, for
some robots r and 5. Local clocks of two robots are said to be synchronized if they al
simultaneously; otherwise, they are asynchronous. Unless otherwise stated, we
local clocks are not necessarily synchrorized. Ther

wavs lick
assuine that the

cluie, even though all the robots execute line
| at real time 0, they may not execute line 4 for the first time simultaneously. This means that

the robots may not be able to obtain a consistent view of their initia) distribution. In fact, we
will see that the difficulty of obtaining a consistent view of the system is a source of some of the
technical problems in designing correct algorithms. For example, if all the robots know that
they can observe their initial distribution simultaneously,

then they can adopt the center of
gravity of their distribution as the common origin, and the 1

ninimum distance vetween any two
robots as the common unit distance. So the robots can move Lo a point on the circumference

of the unit circle centered at \i.e origin, and form an approximation of a circle.

Robot r is said to be active when it executes lines 4-7; otherwise, it is inactwe. By the

definition of c,, r becomes active infinitely many limes. As we stated in Section 1, we assume

that a robot can move to any position instantaneously, and thus the time it takes to execute
Uies 4-7 is negligibly small.

Using this framework, it is possible to discuss the situation in which some robots are added
and/or removed from the system dynamically. This can be done by assuming that a robot
becomes visible (or invisible) when it is added {or removed) from the system. Under this
assumption, all the algorithms we present in this Paper can easily be modified to work correctly
even il the number of robots changes a finite number of times. (See the full paper for details.)
Algorithms having this property can be viewed as self-stabilizing algorithms, since they solve

the given problem in the presence of transient failures. This is an advantage of the distributed
control method. In the centralized wethod, the entire s
all other robots becomes faulty (and is removed).

Fix an z-y coordinate system Z. {The robots have no information on Z.) Let x be a
predicate over the set of multisets of points (given in terms of Z) that is invariant under any
motion (i.e., rotation and parallel transformation) and uniform scaling. For exampie, x might
be true iff the given points are on the circu..ference of a circle or on a line segment. For such r,
we cousider two types of problems, the convergence problem and the formation problem. In the
convergence problem, the goal is to design an algorithm ¢ such that, if all the robots execute
the instructions using ¥, then the positions of the robots converge to a multiset of points (with
respect to the absolute coordinate system Z) satisfying x, regardless of the initial distribution
of the robots. The formation problem is similar, except that the robots must reach some points
satisfying « in finite steps. Since the robots have no knowledge of the coordinate system 2., all
we can expect is to have the robots converge to or form a figure which is similar to the given

ystem can crash if the robot controlling

simultancously. If robot r observes at local time & that both robots ry and r; are at position p, then / should
contain (p, k) for each of 7, and v,
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goal figure. The restriction on x stated above was introduced for this reason All predicates we
discuss in the following are assumed to satisfy this condition.

3 Cecenverging to a Point

Defire a predicate Xpome bY Fpome(p1,....pu) = true iff p, = p, for any 1 < 1,5 < n, where
n > 2 is the number of robots. In this section we discuss the convergence problem for Xuo.,
whicl. e cal! POINT. That is, POINT is the problem of converging all the robots to a single
point. We present three correct oblivious algorithms and one incorrect algorithm. All of these
are deterministic algorithms. We also discuss a limitation of deterministic algorithins.

Nur first algorithm, Ypoine, Simply moves each robot r to the midpoint of its current position
and the position of a robot that is currently furthest from r. Formally, let p* and P, be the
current position of r and the multiset of positions of all other robots at local time k, respectively,
as in lines 3 and 4 of Figure I. Since y,ou. is oblivious, “ipnu( /)" can simply be written as
“Dpornt( Pr,p")." Then Ypouu( o p°) = {(p” + p)/2}. where p is any of the points in F, furthest
from p°

Theorem 1 Function i, correctly solves problems POINT.

Outline of Proof For any real time (, let S(t) be the set of positions of the robots at . Then
it suffices to show that C'H{S(t)) converges to a single point as { goes to infinity, where C/f
denotes the convex hull. Suppose this is not the case. Since CH(S(t)) 2 CH(S(Y')) for any
real times t and ¢’ such that t < ¢/, C H(S§(t)) must then co1 verge to a convex poiygon (. This
implies that for any small real number § > 0, there exists some real time ty such that for any
t > 1o and any corner v of C, there is at least one robot in the §-neighborhood of v (denoted 4,,).
If & is chosen sufficiently sinall, then any such inactive robot must eventually (become active
and) leave 4, since the robots that are furthest from it are located near the é-neighborhood of
some otner corners of C, that are more than 38 away from v. 5o, for C H(5(t)) to converge to
C, some of the robots, say r, must enter 4, repeatedly. However, since § is chosen sufficiently
small, this is possible only If there already is a robot in §, when r chooses a robot furthest from
itself. Cleariy this is impossible. O

Let us modify ¥pon(, and use point p (the point in P, furthest from p*) instead ot (p°* + p)/2
as the next position of r. That is, robot r moves to the position of a robot furthest from
itself. This function does not solve POINT, since of there are only two robots and their clocks
are synchronized, then they simply continue to exchange their positions. In fact, using an
argument similar to that in the proof of Theorem 1, we can prove the following theorem. Let
Ypont1 (Pr,p°) = {bp” + (1 — b)p}, where b is a constant real number.

Theorem 2 ? Function Yoy correctly solves problem POINT iff 0 < b < 1.

Another possible algorithm for POINT is function Yppina( Fr.P") = {g}, where g is the
gravity center of p° and the points in °,. (We can prove its correctness using an argument
similar to that in the proof of Theorem 1.) Note that if the local clocks are synchronized,
then it can solve POINT in one step, sinc~ all robots simultaneously move to g. However, if
the clocks are not synchronized, it is not clear whether or not ¥poniz can solve POINT more
quickly than ¥pein¢ in general.

Function Ypoinea( Pr,p") = {(p” + q)/2}, where g (# p*) is a point in P, closest to p°, moves
robot r to the midpoint of r and a robot nearest to r. This function may seem to be a better
algorithm than Y,ginc, since finding a nearest robot can be easier than finding a furthest one.
Unfortunately, ¥poimi3 does not solve POINT. To see this, consider the case of four robots

*The theorem is partially suggested by Saito[4].
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ry, 72,73 and 74 in which initially, ry and r; (or r3 and r,) are close to each other tut ry and ry
are far apart. Then, r; and r; (or r3 and ry) converge to a point, but since this process never
terminates in finite steps, the four robots never converge to a point.

The next theorem siates that any problem solvable by a deterministic algorithm is actually
solvable by an algorithin for POINT, such as ¥younc-

Theorem 3 Let x be a predicate which ic invariart urder any motion and sumiarity. Then
there 1s a delermunistic algorsithm for solving the convergence problem for x 1f and only if for
any P, x5 P) tmplies x(P).

The proof of Theoremn 3 uses the fact that “clones” remain indistinguishable forever, where
two robots r and s are clones of each other if they have the same coordinate system (and
thus by assmmption, the same initial position), and their Incal clocks are synchronized. In the
following, we assume that no clones exist.

4 Agreement on a Coordinate System

In this section we investigate the problem of obtaining a common coordinate system, where the
goal is to let the robots agree on the origin, unit distance, and direction. If the robots have
a common coordinate system, then a special leader robot can be elected (if necessary) that
controls all other robots. It turns out, however, that agreeing on a ccordinate system is not
possible in gereral. Specifically, we show that, while it is possible for the robots to agree on
the origin and unit distance, agreeing on disrection is not possible in general. We also discuss a
limitation of oblivious algorithms.

4.1 Agreement on the Origin

We call the problem of agreeing on the origin ORIGIN. We first consider the formation problem
for two robots, called MEET, for predicate %poin introduced in Sertion 3. The goal of MEET is
thus to move two robots to a single point in finite steps. Recall that functior Yy, of Section 3
solves the corresponding convergence problem for any number of robots. We have:

Theorem 4 There 1s no oblivious algorithm to solve problem MEET.

Outline of Proof Consider robots r and s. Suppose that there is an oblivious algorithm ¢
that solves MEET. We first observe that, regardless of Z, and Z,, there must be positions p
and g (given in terms of Z) of robots r and s, respectively, such that, from that configuration.
¥ oves exactly one of r and s to the position of the other. (If this is not true, then by
changing the rate of their local clocks carefully and using the fact that ¢ is oblivious, we can
obtain an infinite sequence of moves that never brings the robots to a single point.) Now,
consider an initial configuration in which, in terms of Z, r is at (0,0), s is at (1,1), 2, = Z,
and Z, is obtained [rom Z, by translating its origin to (1,1) and then rotating it about (1,1)
for 180 degrees. Then the situation looks identical to both r and s. Thus even though ¥ may
not be deterministic, all future configurations can look identical to r and s, if their clocks are
synchronized and they always move in the same (symmetric) manner. So it is possible that
they never reach a configuration in which ¥ moves exactly one of r and s to the position of the
other. This is a contradiction. O

On the other hand, we can show that there is a non-oblivious algorithin, called ymees. for

solving MEET. Instead of describing ,m.. formally, we explain the behavior of a robot that
executes it.

Algorithm  ¥ncee: When robot r becomes active for the first time, it tests whether the other
robot s is at the same position as itsell. If so, then r does not do anything. Otherwise, r rotates
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its coordinate systein Z, about the origin so that s is ¢n the positive y-axis of Z,, say at (0, a)
(By assumption, r is at (0,0) of Z,.) Then it moves in the positive r direction of Z,, over any
ponzero distance. It then continues to move in the same direction whenever it becomes active,
until it observes that the position of s has changed twice.

Now, r knows line ¢ that contains the trajectory of s. (Note that by symmetry, £ is the
z-axis of s’s coordinate system Z,.) If £ is parallel to the z-axis of Z,, then r moves to (0,a/2).
Otherwise, ¥ moves to the intersection of { and the z-axis of Z,. O

Theorem 5 Function y,.... correctly solvcs problem MEET.

Outline of Proof The key observation is the following: When one of the robots, say r, ob-
serves that the position of s has changed twice, s must have already observed that r’s position
has changed at least once, and thus s knows where the z-axis of Z, is. Similarly, s will know
that r knows where the z-axis of Z, is. Now, it is easy to show that the trajectory of r (i.e., the
z-axis of Z,) and the trajectory of s (i.e., the z-axis of Z,) are parallel iff » and s become active
for the first time simultaneously. Also, if they become active for the first time simultaneously,
then each Lot has seen the other robot when it was at its initial position. So if the two
trajectories are jarallel, then they move to the midpoint of their initial positions. (They know
where that point i>.) Otherwise they move to the intersection of the two axes. O

Note that in V..., both robots know the position where they meet before reaching there
(This is not true for the algorithms in the previous section.) Thus Y, solves ORIGIN for two
robots, except in the case when the robots have the same initial position. In this case, neither of
the robots ever moves, and thus they will never know whether they have reached an agreement.
We cope with this problem by using additional instructions before ¥,,..: Each time r becomes
active and finds that the other robot s is at the same position as itself, it moves over distance
1 in the positive z-direction of Z,. {Robot s moves in a similar manner, using its local clock ¢,
and coordinate system Z,.) Then, using the assumption that clones do not exist, we can show
thkat eventually, r and s will occupy different positions. Then each of them starts executing
Ymeer When it becomes active again, and eventually they both move to the same position (and
agree on the origin). So ORIGIN is solvable for n = 2.

Now, we describe an algorithm ¥,,,4in for ORIGIN for the case n > 2. Before we apply
Porigin, We Use another algorithm ¥,cq.r to transform the given initial distribution of the robots
into one in which (1) no two robots occupy the same position, and (2) the robots are not located
on a single bne segment. Algorithm t,.acter consists of two parts. Part 1 moves all the robots
to distinct positions, and is similar to, but more complex than, the scattering process we used
for $meer. (We can prove its correctness using the assumption that no clones exist.) Part 2
assures that the robots do not form a single line segment.

Algorithm ¥,catter:

Part 1: Suppose that robot r becomes active and finds that not all robots occupy distinct
positions. (Otherwise, Part 1 is over.) Let P, be the positions of the robots that r observes,
given in terms of Z,. (1) If no other robot is located at the current position of r, then r does
not move, until it observes that all rohots occupy distinct positions. (2) On the other hand, if
m 2 1 other robots are located at the current position of r, then r finds the distance a, > 0
10 its nearest neighbor (excluding those at the current position of r), and computes the value
b, = a, f(a,)/2, whete for z > 0, J(z) = I - 1/27 is a monotonically increasing function in the
range {0, 1). Then r moves over distance b,/2 in the positive z-direction. After that, each time
T becomes active and finds that there are still m other robots at the same position as itself, r
moves over distance b,/2* in the same direction, if this is the k-th move (k = 2,3,...). When
T eventually becomes active and finds that there are fewer than m other robuts at the same
position as itself, r repeats this entire procedure trom the beginning of {2), using a new value
of a, (and resetting k). This process is repeated each time r finds that fewer robots are located
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Then r waits, without moving, until all robots occupy distinct positions.
Part 2: (At this momeont, all the robots occupy distiact positions.} Suppose that robot r
becomes active and finds that the robots are lcrated on a single line segment. (Otherwise
Part 2 is over.) If r is located at an endpoint of the segment, then it does not move. If r is not
at an endpoint, then r moves over any distance in the direction perpendicular 'o the segment
(As soon as some robot does this, the robots n. lunger form a single line segment, and of conrse,
all the robots occupy distinct positions.) O

One technical difficulty 15 that in general, a robot cannot determine, given the positions of
the robots observed at two time instants ¢, and t;, which robot has moved to which position
between £y and t,. We overcowe this problem by imposing a bound on the maximuin distance
that any robot can move while other robots are inactive, so that the robot at position p at time
t; must be at the position closest to p at time t;. Specifically, when robot r becomes active for
the first timme, 1t memorizes the distance a, > 0 to its nearest neighbor. Then r moves at most
distance a,¢/2% in the k-th move, where 0 < ¢ < 1/2is a constant chosen by the algorithm. This
restriction assures that r remains in the interior of the a,¢-neighborhood of its iritial position
Since the intertors of such neighborhoods of :wo robots located at different positions do not
intersect, any robot can correctly know the position of r, even after it remains mactive for a
long time. In Part 2 of $,cqreer, we used a similar technique to prevent two robots located at
different positions from moving to the same position.

Algorithm ¥o,,5in is given next. Each robot first executes algorithm ¥,caccer, and then starts
executing Yorygm as soon as it finds that (1) no two robots occupy the same position, and (2)
the robots are not located on a single line segment. So in the following description of vor,gin.
we assume that these two conditions are already satisfied.

Algorithm Yorigin: Let P, be the positions of the robots that r observes when it becomes
active for the first time (atter finishing ¥,caier). obot r finds the distance a, to its nearest
neighbor. If r is not at a corner of the convex hull C H(P,) of the points in P, then r memorizes
the current position p of its nearest neighbor, and moves towards p each time it becomes active,
staying in the interior of the (a,/2) neighborhood of its initial positive. (See the explanation
in the preceding pacagraph.) Suppose that r is at a corner of CH(P,), and let a, b, c and d
be consecutive corners in clockwise order, where r is at . Then r memorizes the direction that
is away from a along the line containing ab, and moves in that disection each time it becomes
active, staying in the interior of the a,¢-neighborhood of & for some ¢ < 1/2. Here, ¢ .5 chosen
so that the a,¢-peighborhood does not intersect the line containing cd. (This assures that the
robol s at corner ¢ remains to be at a corner of the convex hulls of the new positions of the
robots even after r and s move.)

Robot r continve: ts inuve as described above, until it observes that the position of each
robot has changed at least twice. Then, r knows line £, containing the trajectory of s for each
robot « =t a corner of the initial convex hull. Since the convex hull of the initial positions of
the robots is a k-sided polygon for some k > 3, the lines {¢,} determine a unique, smallest
convex polygon Q that contains the initial convex hull. So r chooses the center of gravity of
the corners of Q as the {common) origin. O

We can show that using Wor.gin, every robot eventually knows the lin~s f2} - olil, {(de
trajectories of the robots that are not at a corner of the convex hull are not used to obtain
the common origin. We must still move such robots. however, in order for other robots r to
know that they have become active sufficiently many times and observed r’s miovement ) So
Algorithm V,,,,,, solves ORIGIN for n > 2.

The following theorem summarizes the discussion given above,

Theorem 8 ORIGIN is solvable for any n > 2.
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at the same position as itself, until no other robot is found to occupy the same position as r




hot r
Twise
~ ot
ment

e

IR
[RUTRL}
Tans e
tune
cefor
st
Fhis
Pt
+ ot
for a

rd At

Larts

di2)

EILE

RIS T
arest
Traes
tive
ihinn
nd d
that
HNeS
asen
t the
f the

f’ﬂrh
each
1 of
dlest
ty of

The
ilan
r to

4.2 Avcreement on the Unit Distance

We call the problem of agreeing on the umt distance UNITDIST For the case v 2 we can
show that in ¥, each of robots r and s eventually finds the mmtial position of the other
Then they can use the distance between theur antial positions as the umit distance. For the case
no - 2, the robots can choose, as the umit distance the length of a shortest side of the & widedd

convex polvgon @ that they obtiuned wang algonithin g g, 100 Subsection 1 Sa we fave

Theorem 7 ' NITDIST s solvable for any n -2

4.3  Agreement on Direction

Now we show that the third problem of agreeing on direction s upnsolvable o generad  Let us

call this problem DIRECTION

Theorem B There s no algorithin for solvig DIRECTION, evenaf no 2 and the locai clix ks
are synchommzed

Outline of Proof Consider two rabots 7 and s such that {1) Z, s obtained from /Z, by rotating,
it for 180 degrees about the ongin, and (2] the local clocks of ¢ and s are synchronmized  Then
1t s posstble that r and s move in the same (symmetric) manner all the time, ana thus when
r decides the direction of its positive ¢ avis, < chooses the apposite direcion lor (15 positive

I axs i

Note that s we stated in Section 2, the ather two agreement probiems are trivially solvable
if the local clocks are synchronized

5 Robots with a Sense of Direction

We say that the robots have a sense of ditecion if they agree an the direcion of the pasitive
T axs The mam result of this section s the followinr,

Theorem 9 /e robots have a sense o, direction, then they can agree on u cotnmon coordinats

system. and elect a leader

Although the first claim follows lmnediately fram the discussions i Subsections 41 and
4.2, 10 the full paper we show that the following algonithm, called v o dinare. solves both the
coordinate agreement problem and the leader clection problem, of the robots have a sense of
direction  As before, it is assumed that we first use ¥, caner 50 that no two robots will occupy

vhe sue ! enton

Algorithm Yoordinate: We only give an outline. (We use “east™ to denote the positive r
direction. etc.) The idea is to choose the horizontal e though the northern most robots as
the common 7 axis, and the vertical line though the eastern most robots as the common y-axis
To achicon tus goal, (1) each eastern-must robus wiat is nol 2o ther : et continue to rove
north within a “small”™ neighborhood of 1ts imtial position (as explaried in Section 1), and
(2} all other robots continue to move west  (1f there 15 a robot that s both eastern most and
northern most, then it first inoves to a point to the south of any robot that is eastern-monst.
and then does (1).) Then eventually, every robot knows the trajectorios of a'' other robots,
and chooses the northern-most (of eastern most) trajectory as the common r- {or y-) axis, The
unit distance 1s then chosen to be the nunumum distance > 0 between any two westbound (i ¢ |

hotizantal) trajectories The leader 1s the northern most robot among the eastern most robots
n
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Sinee the Jeader can compute the hinal positions of all the robots that satisfy any given
predicate and “guide” them to their respective final positions, we obtaun the following theorem
Detals will be (ound in the full paper

Theorem 10 /f the robots have a sense of direction, then for any predicate s, the convergener
and formation problems for x s solvable

tn particular, we have

Corollary 1 I the robots have a sense of dirvetion, then the problems of forrming a cirele and
a hime segment are solvable

6 Councluding Remarks

We viewed a group of mobile robots as a distributed system in which the tomponents can
comnimicate with each other only by means of their moves, and investigated the possibabity and
impossibility of solving some of the problemns related to the formation of geomettic figures vn the
plane Qur study indicates that the assumptions we make on the knowledge and capabil.ties
of the obots can aflect the difficulty of solving the given problem in a subtle way. We are
currently conducting sinular investizations ou (1) randomized algorithms, {2) the case in which
the motion of a tobot is not instantaneous, and (3} the 3. dimeasional case. The results will he
reported tnoa future paper
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